ln(2x^4+10x^3)+ln(1/(3x^3))

Simple and best practice solution for ln(2x^4+10x^3)+ln(1/(3x^3)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ln(2x^4+10x^3)+ln(1/(3x^3)) equation:


D( x )

1/(3*x^3) <= 0

2*x^4+10*x^3 <= 0

3*x^3 = 0

1/(3*x^3) <= 0

1/(3*x^3) <= 0

1/3*x^-3 <= 0

1/3*x^-3 <= 0 // : 1/3

x^-3 <= 0/1/3

x^-3 <= 0

1/(x^3) <= 0

x <> 0

1/(x^3) <= 0 // * x^6

(x^6)/(x^3) <= 0

x^3 <= 0

x^3 <= 0 // ^ 1/3

x <= 0

x in (-oo:0)

2*x^4+10*x^3 <= 0

2*x^4+10*x^3 <= 0

2*x^4+10*x^3 = 0

2*x^3*(x+5) = 0

x+5 = 0 // - 5

x = -5

2*x^3 = 0

2*x^3 = 0 // : 2

x^3 = 0

x = 0

x*(x+5) <= 0

(-oo:-5)(-5:0)(0:+oo)x+5-++x--+

3*x^3 = 0

3*x^3 = 0

3*x^3 = 0 // : 3

x^3 = 0

x = 0

x in (0:+oo)

ln(2*x^4+10*x^3)+ln(1/(3*x^3)) = 0

ln(1*(2*x^4+10*x^3))+ln(1/(3*x^3)) = 0

ln(1*(1/(3*x^3))*(2*x^4+10*x^3)) = 0

ln((1/(3*x^3))*(2*x^4+10*x^3)) = 0

ln((1/(3*x^3))*(2*x^4+10*x^3)) = ln(e^0)

(1/(3*x^3))*(2*x^4+10*x^3) = e^0

(1/(3*x^3))*(2*x^4+10*x^3)-e^0 = 0

1/3*x^-3*(2*x^4+10*x^3)-1 = 0

1/3*x^-3*(2*x^4+10*x^3)-1 = 0

2/3*x+7/3 = 0

2/3*x+7/3 = 0

2/3*x+7/3 = 0 // - 7/3

2/3*x = -7/3 // : 2/3

x = -7/3/2/3

x = -7/2

x in { -7/2}

x belongs to the empty set

See similar equations:

| 7-6=12-2x | | 0=cx-a+b | | cx-a+b=2b | | 5x+-10=21-6x | | 9+x/2=10 | | 1x-4y=-27 | | y=5sinx+3x | | -4x/3=12 | | 355-5x=0+5x | | -3/4y+2=14 | | -2(3n-1)-n=5(n-4) | | 6/5+x=4/7 | | 120+10x=15+4x | | 2x+(2*2*x+5)=949 | | x-52=194 | | 5*5x=8*5 | | 6x-28=x-8 | | 3x+(2*2*x+5)=949 | | 10n+15=54n+48+4 | | 3[2x-9]-10=-17 | | 2(7-3r)=3r-22 | | (4/(x-5))+(3/(x+4)) | | 14x^2-6x^3=0 | | 9(4-y)/5=-y | | 8v-2+2(2v+2)=-2(v+5) | | 2x+15=4x-15 | | =12s^2-17s-5 | | 5y+11=51 | | x-4/5=6/5 | | 5*2x=6*5 | | 4a+7b+3a-2bfora=5 | | 20-5(x-1)+3x=-(2x-15) |

Equations solver categories